3. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. [3.OA.3]				
10. Use place value understanding to round whole numbers to the nearest 10 or 100. [3.NBT.1]				
22. Relate area to the operations of multiplication and addition. [3.MD.7] [Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. [Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. [Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a x b$ and $a x c$. Use area models to represent the distributive property in mathematical reasoning. [Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real word problems.				
12. Multiply one-digit whole numbers by multiples of 10 in the range $10-90$ (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations. [3.NBT.3]				

